Abstract

Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it’s microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.

Highlights

  • Complex network based time series analysis has attracted noteworthy attention in recent years across various domains

  • In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked

  • Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions

Read more

Summary

Introduction

Complex network based time series analysis has attracted noteworthy attention in recent years across various domains. Lacasa et al propose the widely used visibility graph algorithms [25,26,27,28,29,30,31,32,33,34,35] by linking visible elements in a series. Each of these approaches was quickly adopted and widely used among various researchers to extract information embedded in time series from varied domains

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.