Abstract
In this paper, we propose a generative framework that unifies depth-based 3D facial pose tracking and face model adaptation on-the-fly, in the unconstrained scenarios with heavy occlusions and arbitrary facial expression variations. Specifically, we introduce a statistical 3D morphable model that flexibly describes the distribution of points on the surface of the face model, with an efficient switchable online adaptation that gradually captures the identity of the tracked subject and rapidly constructs a suitable face model when the subject changes. Moreover, unlike prior art that employed ICP-based facial pose estimation, to improve robustness to occlusions, we propose a ray visibility constraint that regularizes the pose based on the face model's visibility with respect to the input point cloud. Ablation studies and experimental results on Biwi and ICT-3DHP datasets demonstrate that the proposed framework is effective and outperforms completing state-of-the-art depth-based methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on pattern analysis and machine intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.