Abstract

A rotational version of the fluid-mechanical sewing machine (FMSM) is investigated experimentally. A thin thread of silicon oil was dispensed at a constant flow rate Q from a height H and fell on a table rotating at an angular speed ω, at a distance R from the axis. In all experimental runs, the values of Q and H were kept constant while the radius R was changed manually after each full rotation. Preliminary results show that the usual stitching patterns ensue as the local linear speed V=ωR approaches the critical transition speeds seen in the FMSM scenario but with subtle asymmetries introduced by rotational (centrifugal) effects. In some instances, arcs and loops of the traces were noticeably more pronounced when directed outward compared to those pointing toward the axis of rotation. Moreover, we observed stitching patterns not reported before. Overall, the symmetry-breaking features, while clearly visible, were rather subtle. Their morphological characteristics, such as differences in local curvature of traces relative to those in FMSM, are estimated to be below 10% in most cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call