Abstract
Shear banding is a type of plastic flow instability with often adverse implications for cutting and deformation processing of metals. Here, we study the mechanics of plastic flow evolution within single shear bands in two different (Ti and Ni-based) alloy systems. The local shear band displacement profiles are quantitatively mapped at high resolution using a special micro-marker technique. The results show that shear bands, once nucleated, evolve by a universal viscous sliding mechanism that is independent of microstructural details. The evolution of local deformation around the band is accurately captured using a simple momentum diffusion model by assuming Bingham flow rheology for the band material. The predicted band viscosity is very small, comparable to those of liquid metals. A plausible explanation for this small viscosity and fluid-like behavior at the band, based on phonon drag, is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.