Abstract
The traveling wave problem for a viscous conservation law with a nonlinear source term leads to a singularly perturbed problem which necessarily involves a non-hyperbolic point. The correponding slow-fast system indicates the existence of canard solutions which follow both stable and unstable parts of the slow manifold. In the present paper we show that for the viscous equation there exist such heteroclinic waves of canard type. Moreover, we determine their wave speed up to first order in thesmall viscosity parameter by a Melnikov-like calculation after a blow-up near the non-hyperbolic point. It is also shown that there are discontinuous waves of the inviscid equation which do not have a counterpart in the viscous case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.