Abstract

This study deals with the description of the influence of oil viscosity and process conditions on catastrophic phase inversion, through the analysis of the effects of formulation and process variables on the dispersed phase fraction at which the inversion is triggered. The in situ simultaneous follow-up of viscosity and conductivity measurements allowed, from a process point of view, to emphasize the effect of the aqueous phase addition rate on the catastrophic phase inversion point (PIP) and multiple w/O/W emulsion formation. Thus if the aqueous phase is added by very small fractions, formulation dominates and the inversion phenomenon can be accelerated, as a consequence of multiple emulsion formation, that greatly increases the volume of effective dispersed phase. An increase in oil viscosity greatly increased the tendency of the oily phase to become the dispersed phase and promoted the formation of highly concentrated emulsions (about 80 to 95% in volume) after inversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.