Abstract

The growth of hypersonic boundary layers over both concave and convex surfaces is described, the strong-viscous-interaction equation due to Cheng et al. (1961) for curved surfaces with sharp leading edges being solved asymptotically for small and large arguments. Both the asymptotic solution for large arguments and a numerical integration predict an oscillatory behaviour of the boundary-layer thickness on concave surfaces. A modification of Cheng's theory, as suggested by Sullivan (1968) and Stollery (1970), is also examined and compared with experimental data reported here. The experiments were conducted in air using a hypersonic gun tunnel under cold wall conditions at M∞ = 12·25. They included measurement of surface pressure, heat-transfer distributions and schlieren studies for concave and convex models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.