Abstract

Using de-ionized ultra-filtered water (DIUFW) as the working fluid, the effects of viscous dissipation in microtubes with inner diameters of 19.9μm and 44.2μm, respectively, have been studied by experiments, the theoretical analysis and the numerical simulation at laminar state. Based on thermal imaging technology of micro-area, the temperature rise resulted from the viscous dissipation in microtube is measured by employing IR camera with a specially magnifying lens at different Reynolds numbers. A 2-D model adapted to microtube is presented to simulate the viscous dissipation characteristic considering electric double layer effect (EDL). The investigation shows the calculating results are in rough agreement with the experimental data if removing the experimental uncertainties. Based on the experimental and the numerical simulation results, a viscous dissipation number which can describe the law of the viscous heating in microtube is summed up and it explains the abnormity of the flow resistance in microtubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.