Abstract
Viscous fingering is one of the main challenges that could reduce areal sweep efficiency during waterflooding in oil reservoirs. A series of waterflooding experiments were carried out in a Hele-Shaw cell at ambient temperature during which areal sweep efficiency was estimated and techniques to ease the fingering problem were examined. The onset and propagation of viscous fingers were monitored as a function of both injection rate and injection/production positions. Image processing techniques were utilized to quantitatively investigate the propagation of fingers. The experimental results show that, under specific conditions, increasing the number of finger branches could improve the areal sweep efficiency, whereas growth of a single narrow finger has a negative impact on oil displacement efficiency. According to the obtained results, increasing the injection rate improves the areal sweep efficiency up to a critical rate at which viscous fingers start to grow. The impact of heterogeneity of the medium on distributing the viscous fingers was also investigated by introducing two different arrangements of fractures in the model. The results show that fractures perpendicular to the direction of flow would distribute the displacing water more uniformly, while fractures in the direction of flow would amplify the unfavorable sweep efficiency.
Highlights
During waterflooding, water is injected into a well or pattern of wells to drive oil into production wells
The experimental results show that, under specific conditions, increasing the number of finger branches could improve the areal sweep efficiency, whereas growth of a single narrow finger has a negative impact on oil displacement efficiency
Our observation showed that the rate of finger growth in length and width as well as the number of their branches could have a considerable effect on the areal sweep efficiency
Summary
Water is injected into a well or pattern of wells to drive oil into production wells. Sarma surveyed viscous fingering in porous media as a function of several parameters such as viscosity difference between the displaced and displacing phases, injection rate, interfacial tension and direction of saturation changes (i.e., imbibition and drainage) (Sarma 1986). He showed that viscous fingering is more pronounced in drainage; imbibition is a more efficient process compared to drainage. It was found that the length of fingers can be closely related to the injection rate; the tip length of the fastest growing finger usually tends to flow linearly
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.