Abstract

The attenuation of a plane acoustic wave incident on a flat impedance surface in a sheared and viscous fluid is investigated numerically and asymptotically. Predictions of various boundary models of impedance surfaces in shear flow are tested by comparing their predicted reflection coefficient. It is found that viscosity has a significant effect, reducing the reflection of upstream propagating sound while increasing the reflection of cross-stream propagating sound. The classical Ingard-Myers boundary condition is shown to incorrectly predict the damping rate of sound in many cases, and in some cases viscous effects are shown to be comparable to shear effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.