Abstract

The present study concentrates on the effects of viscous dissipation and the yield shear stress on the asymptotic behaviour of the laminar forced convection in a circular duct for a Bingham fluid. It is supposed that the physical properties are constant and the axial conduction is negligible. The asymptotic temperature profile and the asymptotic Nusselt number are determined for various axial distributions of wall heat flux which yield a thermally developed region. It is shown that if the asymptotic value of wall heat flux distribution is vanishes, the asymptotic value of the Nusselt number is zero. The case of the asymptotic wall heat flux distribution non-vanishing giving a value of the Nusselt number dependent on the Brinkman number and on the dimensionless radius of the plug flow region was also analysed. For an infinite asymptotic value of wall heat flux distributions, the asymptotic value of the Nusselt number depends on the dimensionless radius of the plug flow region and on the dimensionless parameter which depends on the asymptotic behaviour of the wall heat flux. The condition of uniform wall temperature and convection with an external isothermal fluid were also considered. The comparison with other existing solutions in the literature in the Newtonian case is analysed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.