Abstract

The main objective of the present study is to explore the flow of a nanofluid containing gyrotactic microorganisms over a vertical isothermal cone surface in the presence of viscous dissipation and Joule heating. The combined effects of a transverse magnetic field and Navier slip in the flow are considered. Using appropriate transforms the set of partial differential equations governing the flow are converted to a set of ordinary differential equations. Influence of the parameters governing the flow is shown for velocity, temperature, concentration and motilemicroorganisms as well as local skin Friction coefficient, local Nusselt number, local Sherwood number and local density of the motile microorganisms number. An increasing in the value of Eckert number rises the velocity of the fluid and reduce the temperature, concentration and density of motile microorganisms profiles, while buoyancy ratio Nr and magnetic field parameters increase local skin friction coefficient, local Nusselt number, local Sherwood number and local density of the motile microorganisms number decrease as a result of the presence of Lorentz force which resist the motion of the flow. On the other hand, the motile microorganisms boundary layer thickness decreases with an increasing on the bioconvection Lewis number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.