Abstract

An analysis is made to illustrate the MagnetoHydroDynamics (MHD) flow and gradient heat transport of a Newtonian fluid over a stretching sheet embedded in a porous matrix. The governing nonlinear partial differential equations are reconstituted as ordinary differential equations utilizing suitable similarity transformation and then treated numerically using 4th order Runge-Kutta method along with shooting technique and analytically by Homotopy Perturbation Method. The verification of present study with earlier works serves as the benchmark of reliability of the present study. The important outcomes of this study are: porous parameter (Kp) acts as aiding force i.e when Kp is increased from 0.1 to 10 gradually there is a significant growth in velocity and after that rate of increment gets slowdown, greater Eckert number and joule heating parameter cause a rise in temperature as well as enhance the thermal boundary thickness. Consequently rate of heat transfer diminishes as thickness leads to low heat transfer coefficient. The applications of this study are shown in: multiple heating devices and industrial processes such as incandescent light bulb's filament emitting light, food processing and polymer processing etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call