Abstract

Protein-ligand binding and enzyme activity have been shown to be regulated by solvent viscosity, induced by the addition of viscous cosolvents. This was indirectly interpreted as an effect on protein dynamics. However, viscous cosolvents might affect dynamic, e.g., viscosity, as well as thermodynamic properties of the solution, e.g., activity of solution components. This work was undertaken to examine the effect of viscous cosolvent on the structural dynamics of proteins and its correlation with dynamic and thermodynamic solution properties. For this purpose we studied the effect of viscous cosolvent on the specific ultrasonic absorption, delta mu, of bovine serum albumin, at pH = 7.0 and at 21 degrees C, and frequency range of 3-4 MHz. Ultrasonic absorption (UA) directly probes protein dynamics related to energy dissipation processes. It was found that the addition of sucrose, glycerol, or ethylene glycol increased the BSA delta mu. This increase correlates well with the solvent viscosity, but not with the cosolvent mass concentration, activity of the solvent components, dielectric constant, or the hydration of charged groups. On the grounds of these results and previously reported findings, as well as theoretical considerations, we propose the following mechanism for the solvent viscosity effect on the protein structural fluctuations, reflected in the UA: increased solvent viscosity alters the frequency spectrum of the polypeptide chain movements; attenuating the fast (small amplitude) movements, and enhancing the slow (large amplitude) ones. This modulates the interaction strength between the polypeptide and water species that "lubricates" the chain's movements, leading to larger protein-volume fluctuation and higher ultrasonic absorption. This study demonstrates that solvent viscosity is a regulator of protein structural fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.