Abstract

We provide a general framework for the derivation of the hydrodynamical corrections to the QCD electromagnetic emissivities in a viscous fluid. Assuming that the emission times are short in comparison to the fluid evolution time, we show that the leading corrections in the fluid gradients are controlled by the bulk and shear tensors times pertinent response functions involving the energy-momentum tensor. In a hadronic fluid phase, we explicit these contributions using spectral functions. Using the vector dominance approximation, we show that the bulk viscosity correction to the photon rate is sizable, while the shear viscosity is negligible for about all frequencies. In the partonic phase near the transition temperature we provide an assessment of the viscous corrections to the photon and dilepton emissions, using a non-perturbative quark-gluon plasma with soft thermal gluonic corrections in the form of operators of leading mass dimension. Again, the thermal bulk viscosity corrections are found to be larger than the thermal shear viscosity corrections at all energies for both the photon and dilepton in the partonic phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.