Abstract
The present paper deals with the study of viscous contributions to the pressure for the viscous potential flow analysis of Kelvin–Helmholtz instability with tangential magnetic field at the interface of two viscous fluids. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses for two fluids are not continuous at the interface. Here, we have considered viscous pressure in the normal stress balance along with the irrotational pressure and it is assumed that the addition of this viscous pressure will resolve the discontinuity between the tangential stresses and the tangential velocities at the interface. The viscous pressure is derived by mechanical energy equation and this pressure correction applied to compute the growth rate of magnetohydrodynamic Kelvin–Helmholtz instability. A dispersion relation is obtained and stability criterion is given in the terms of critical value of relative velocity. It has been observed that the inclusion of irrotational shear stresses have stabilizing effect on the stability of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.