Abstract

Novel coconut oil based copper oxide nanofluids of various concentrations have been prepared by ultrasonically assisted two step method. Viscosity studies have been made experimentally and theoretically at various temperatures and shear rates for different concentrations of nanofluid ranging from 0% to 2.5%. Shear thinning, a non-Newtonian behavior is observed in all the samples. The shear thinning is higher at lower shear rates and higher concentrations. The shear thinning at low concentration is attributed to the non-Newtonian behavior of carrier liquid, but at higher concentration there is a considerable contribution from particle too. The measured viscosities of nanofluids are compared with existing theoretical models and found to have very slight deviation due to size, morphology and interactions. New empirical correlations are proposed for predicting viscosity of CuO–coconut oil nanofluid at various temperatures and concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.