Abstract
In this paper, we study a system of second order integro-partial differential equations with interconnected obstacles with non-local terms, related to an optimal switching problem with the jump-diffusion model. Getting rid of the monotonicity condition on the generators with respect to the jump component, we construct a continuous viscosity solution which is unique in the class of functions with polynomial growth. In our study, the main tool is the associated of reflected backward stochastic differential equations with jumps with interconnected obstacles for which we show the existence of a unique Markovian solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.