Abstract

AbstractThe ratio of the dispersed phase viscosity to that of the continuous phase is a critical parameter for microfluidic two‐phase flows. Here, the influence of the viscosity ratio on liquid‐liquid flow in T‐shaped microchannels is studied experimentally. Three basic flow patterns, i.e., parallel, plug, and droplet flow, are observed for different sets of immiscible liquids. Flow pattern maps are plotted and generalized using a combination of Weber and Ohnesorge dimensionless numbers. In the plug flow pattern, interface deformations occur for low viscosity ratios. Existing correlations from the literature are tested against experimental data for plug velocity and lengths. Despite the significant plug interface deformations, the influence of the viscosity ratio on the plug length and velocity is negligible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.