Abstract

The viscosity properties of homogeneous polyelectrolyte complex solutions of sodium carboxymethyl cellulose (CMC) and poly(acrylamide-co-dimethyldiallylammonium chloride) have been investigated by means of a rotation viscometer at different complexation ratios, shear rates and temperatures. Compared with aqueous solutions of the component polyelectrolytes, such complex solutions can afford substantially increased viscosities at the complexation ratios examined, together with enhanced shear-thinning rheology and temperature stability. According to this study, it is possible to improve the viscosity properties of water-soluble polymers by homogeneous interpolyelectrolyte complexation in aqueous solutions. © 2000 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.