Abstract

The shear viscosity of clay-based coating colors containing latex and carboxymethyl cellulose (CMC) has been measured over a relatively large shearrate region. In the shear-rate range of 50–1500 s−1 the measurements were performed using a rotational viscometer and, at higher shear rates extending into the region 105 − 106 s−1, a high pressure capillary viscometer was employed. The viscosity of the clay colors increased with increasing CMC-concentration, but the influence of the CMC-content was less pronounced at higher shear rates. The apparent shear-thinning behavior of the investigated colors could, in part, be attributed to the shear-thinning of the corresponding polymer (CMC) solution constituting the liquid phase of the color, but the influence of another factor was also indicated. At low shear rates, the interaction between the color components can produce relatively high viscosity levels, but in the high shear rate region these interactions appear to be less important for the viscosity level. It is also of interest to note that the viscosity dependence on the solids content in the high shear-rate region could be described with reasonable accuracy using an empirical equation neglecting interactions between the color components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call