Abstract

In a series of earlier papers it has been established that the viscosities of the pure gases CH4, CO2, CF4, and SF6 as well as those of their binary mixtures conform to the extended law of corresponding states formulated by Kestin, Ro, and Wakeham. In this paper, the kinetic-theory expressions for multicomponent gas mixtures are used in conjunction with the law of corresponding states and the appropriate binary scaling parameters σij and εij to generate the viscosities of several ternary and quaternary mixtures of these gases. The calculated viscosities are compared with direct measurements (accuracy ±0.2%) performed in an oscillating disk instrument in the temperature range 25–200°C. The comparison reveals that the generated data depart from the measured viscosities by a maximum of 0.5% and that the standard deviation is only 0.25% which is comparable with the experimental uncertainty. The validity of the calculation scheme presented for predictive purposes is thereby confirmed. It is emphasized that the calculation is based exclusively on previously published information and that it does not in any way utilize the data on multicomponent mixtures. Thus the calculation can be described as a true ’’prediction.’’

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.