Abstract

We show that a quantized ideal fluid will generally exhibit a small but non-zero viscosity due to the backreaction of quantum soundwaves on the background. We use an effective field theory expansion to estimate this viscosity to first order in perturbation theory. We discuss our results, and whether this estimate can be used to obtain a more model-independent estimate of the "quantum bound" on the viscosity of physical systems

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.