Abstract

Nonequilibrium molecular dynamics (NEMD) simulations have been performed on 1-methyl-3-ethyl-imidazolium bis(trifluoromethane)sulfonimide [emim][Ntf(2)] using Lees-Edwards boundary conditions. A range of inverse shear rates corresponding to a fraction of the rotational relaxation time for the slowest relaxing molecular axis of anion and cation to 20 rotational relaxation times (1/20 tau(rot) < gamma < 5/tau(rot)) has been investigated. An extrapolation of the shear-rate-dependent viscosity obtained from these simulations to zero shear rate using the empirical three-parameter Carreau equation yielded excellent agreement with the viscosity obtained from equilibrium MD simulations. Based upon the Carreau equation fit to the simulation data, shear-thinning behavior was observed in [emim][Ntf(2)] for all shear rates investigated, implying that Newtonian behavior is observed in [emim][Ntf(2)] only for shear rates significantly lower than the inverse rotational relaxation time. A close resemblance between the apparent time-dependent viscosity extracted from equilibrium MD simulations and the shear-rate-dependent viscosity extracted from NEMD simulations has been found and discussed. MD simulations accurately predicted [emim][Ntf(2)] density, self-diffusion coefficients, heat of vaporization, and lattice parameters for the crystalline phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.