Abstract
The kinematic viscosity η/ρ approaches infinity as the density ρ approaches zero, since the results of kinetic theory show that the molecular viscosity η is independent of density. The elementary viscosity derivations use a linear velocity profile which implies near infinite streaming velocities as the density becomes small. The streaming velocities must be finite, and the velocity profile must have an upper and a lower limit in the atmosphere. It is shown that the viscous stress must approach zero with decreasing density when the velocity profile is bounded. Either the velocity gradients or the corrected viscosity coefficients become small in the higher atmosphere. The viscous effect depends on a length scale representative of the wind shear and is a maximum in the lower F-region for scales comparable to those representative of the air currents studied in synoptic meteorology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.