Abstract

A number of biochemical reactions proceed inside biomembranes. Because the rate of a chemical reaction is influenced by chemical properties of the reaction field, it is important to examine the chemical properties inside the biomembranes, or lipid bilayer membranes, for understanding biochemical reactions. In this study, we estimate viscosity inside the lipid bilayers of liposomes with picosecond time-resolved fluorescence spectroscopy. trans-Stilbene is solubilized in the lipid bilayers formed by phosphatidylcholines, DSPC, DOPC, DPPC, DMPC, and DLPC, with 18, 18, 16, 14, and 12 carbon atoms in their alkyl chains, respectively, and egg-PC. Viscosity inside the lipid bilayer is estimated from the photoisomerization rate constant and from the rotational relaxation time of the first excited singlet state of trans-stilbene. The effect of the hydrocarbon chain length and temperature on viscosity is examined. The presence of two solvation environments within the lipid bilayer is indicated from the two independent estimations. One environment is 30 to 290 times more viscous than the other. Even single-component lipid bilayers are likely to have heterogeneous structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call