Abstract

A practical method of computing the viscosity of liquid metals and warm dense matter over wide ranges in parameters is proposed. The method is based on mapping the system of interest onto the Yukawa model, for which the viscosity is well known and can be written in a quasiuniversal form. Comparisons are made with quantum molecular dynamics results for compressed iron relevant to the Earth's core, experimental data for many liquid metals, and simulation results for dense deuterium relevant to inertial confinement fusion experiments. Finally, the dispersion and damping of ion-acoustic waves in warm dense matter are considered in this context.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call