Abstract

Oscillating plate and rotational viscosity measurements are reported for a series of liquid crystals and include n-p-cyano-p-hexylbiphenyl (K18), 4-n-hepthyl-4′-cyanobiphenyl (K21), ethyl-cyclohexyl-ethyl-6-fluoro – n-propyl-biphenyl (I32), n-propyl-cyclohexyl-ethyl-6-fluoro – n-butyl-biphenyl (I43) and a n-pentyl-cyclohexyl-cyanophenyl : n-heptyl-cyclohexyl-cyanophenyl mixture. Rotational viscosity measurements were carried out over a temperature range from ambient to ∼90°C. Comparison of the values at a temperature of 5 K above the below the clearing point indicate an odd–even effect as the chain length of the hydrocarbon tail is altered. The principle viscosities η1, η2, η3 and η45were measured using an oscillating plate viscometer and the temperature dependences used to calculate the activation energies for flow in the various directions. The magnitude of the activation energy is shown to change with the length of the hydrocarbon chain. The incorporation of the cyclohexyl group imparts flexibility and reduces the activation energy flow, whilst the presence of the fluoro group increases the interactions between molecules, and this is reflected in higher values of the viscosity. The change of viscosity with alignment angle is explored for two of the systems studied and the fit to theory investigated. The Leslie–Ericksen coefficients are calculated for these systems and discussed in terms of changes in the molecular interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.