Abstract
Experimental data on the viscosity of mixtures of CO2 and lubricant oil were acquired and correlated using an excess-property approach based on the classical Eyring liquid viscosity model. Three oils of different types and viscosity grades (alkylbenzene AB ISO 32, mineral MO ISO 50 and polyol ester POE ISO 68) were evaluated at temperatures ranging from 36.5 to 82ºC. The excess activation energy for viscous flow was successfully correlated as a function of temperature and concentration using Redlich-Kister polynomial expansions with up to three terms. Large departures from the ideal solution viscosity behavior have been identified in all mixtures. The nature of the observed deviations has been explored in the light of their dependence on temperature, refrigerant concentration and oil type. The Katti and Chaudry (1964) model of the activation energy of viscous flow displayed the best correlation of the experimental data, with RMS deviations of 4.6% (AB ISO 32), 3.3% (MO ISO 50) and 2.8% (POE ISO 68).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Brazilian Society of Mechanical Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.