Abstract
In this paper, we construct random iterative processes for nonexpansive random operators and study necessary conditions for these processes. It is shown that these random iterative processes converge to random fixed points of nonexpansive random operators and solve some random variational inequalities. We also proved that an implicit random iterative process converges to the random fixed point and solves these random variational inequalities. Our results can be viewed as a refinement and improvement of the previously known results for variational inequality theory and also give generalization stochastic version of some results of Xu [23].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.