Abstract

Nanofluids are a group of novel engineering materials that are increasingly being used, particularly in the processes of heat exchange. One of the most promising materials in this group is magnesium oxide–ethylene glycol (MgO–EG) nanofluid. The literature informs that this material is characterized by an significant increase in thermal conductivity with low dynamic viscosity increase. The aim of this paper is to provide experimental data on the dynamic viscosity and thermal conductivity of nanofluids containing MgO nanoparticles with 20 nm average size and ethylene glycol as base fluid. To determine dynamic viscosity and thermal conductivity of samples, a HAAKE MARS 2 rheometer (Thermo Electron Corporation, Karlsruhe, Germany) and KD2 Pro Thermal Properties Analyzer (Decagon Devices Inc., Pullman, Washington, USA) were used. Additionally, a comparison of the experimental results and the predictions of theoretical models was presented. It was presented that the vast majority of theoretical models does not describe in a correct way both viscosity and thermal conductivity. It was also shown that the enhancement of this basic physical properties might be described with good result with second degree polynomials. Finally, evaluation of the heat transfer performance was presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.