Abstract

We investigate the viscosity dependence on concentration and molecular weight of semiflexible polyelectrolyte sodium carboxymethylcellulose (NaCMC) in aqueous salt-free and NaCl solutions. Combining new measurements and extensive literature data, we establish relevant power laws and crossovers over a wide range of degree of polymerization (N) as well as polymer (c) and salt (cs) concentrations. In salt-free solution, the overlap concentration shows the expected c* ∝ N–2 dependence, and the entanglement crossover scales as ce ∝ N–0.6±0.3, in strong disagreement with scaling theory for which ce ∝ c* is expected, but matching the behavior found for flexible polyelectrolytes. A second crossover, to a steep concentration dependence for specific viscosity (ηsp ∝ c3.5±0.2), commonly assigned to the concentrated regime, is shown to follow c** ∝ N–0.6±0.2 (with c**/ce ≃ 6) which thus suggests instead a dynamic crossover, possibly related to entanglement. The scaling of c* and ce in 0.01 and 0.1 M NaCl shows neutra...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call