Abstract

We have calculated viscosity and mutual diffusion of deuterium-tritium (DT) in the warm, dense matter regime for densities from 5 to 20 g/cm{3} and temperatures from 2 to 10 eV, using both finite-temperature Kohn-Sham density-functional theory molecular dynamics (QMD) and orbital-free molecular dynamics (OFMD). The OFMD simulations are in generally good agreement with the benchmark QMD results, and we conclude that the simpler OFMD method can be used with confidence in this regime. For low temperatures (3 eV and below), one-component plasma (OCP) model simulations for diffusion agree with the QMD and OFMD calculations, but deviate by 30% at 10 eV. In comparison with the QMD and OFMD results, the OCP viscosities are not as good as for diffusion, especially for 5 g/cm{3} where the temperature dependence is significantly different. The QMD and OFMD reduced diffusion and viscosity coefficients are found to depend largely, though not completely, only on the Coulomb coupling parameter Γ , with a minimum in the reduced viscosity at Γ≈25 , approximately the same position found in the OCP simulations. The QMD and OFMD equations of state (pressure) are also compared with the hydrogen two-component plasma model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call