Abstract

Kinetic fragility indices m and F1/2 as well as glass transition temperature Tg of alkaline earth zinc phosphate melts of molar composition 20 MO–30 ZnO–50 P2O5 (with M=Ba, Sr, Ca, Mg) were determined using viscometry and differential scanning calorimetry (DSC). Beam bending and concentric cylinder experiments were performed to measure the flow resistance in temperature ranges above glass transition and close to liquidus, respectively. Different upscan rates of DSC runs through the glass transition were used to correlate changes of the fictive temperature with kinetic fragility. Both methods revealed that glass transition temperature correlates negatively and kinetic fragility positively with the size of M. Metal cation mixing (M+Zn) led to a negative deviation from linearity for Tg, while exchanging M resulted in a linear dependence of Tg, if scaled with averaged charge-to-distance ratio. The fictive temperature method overestimated the compositional dependence of m by a ratio up to 1.9.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.