Abstract

Temperature and loading dependences on the rheological behavior and isobaric specific heat capacity of several suspensions of alumina nanoparticles in a binary mixture of [C2mim][CH3SO3] ionic liquid and water were experimentally determined to assess its potential condition of enhanced heat transfer fluids. Rheological tests show a clear Newtonian behavior for the base fluid and the NEILs with lower Al2O3 concentrations while higher amounts of alumina nanoparticles entail non-Newtonian fluids and increase in viscosity up to 78%. The heating-cooling viscosity tests reveal that no significant viscosity hysteresis occur and VFT equation adequately describe the temperature dependence. Isobaric specific heat capacities decrease (<10%) with nanoparticle mass fraction and increase (<10%) with temperature. The goodness of the Raud et al. correlation for predicting the isobaric specific heat capacity of nanoparticles enhanced fluids is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.