Abstract

The linear stability of viscous Keplerian flow around a gravitating center is studied using the rheological granular fluid model. The linear rheological instability triggered by the interplay of the shear rheology and Keplerian differential rotation of incompressible dense granular fluids is found. Instability sets in in granular fluids, where the viscosity parameter grows faster than the square of the local shear rate (strain rate) at constant pressure. Found instability can play a crucial role in the dynamics of dense planetary rings and granular flows in protoplanetary disks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.