Abstract
The present study tries to present a cyclic hardening model with the aim to simulate quantitatively the material response under strain controlled cyclic loading in tension-compression, of specified axial deformation. A numerical study was carried out to investigate the cyclic constitutive behaviour of alloy Indium under viscoplastic deformation. The analysis was performed under prescribed symmetric strain-controlled cyclic loading. The model contains both isotropic and kinematic hardening components, while the analysis were performed using Comsol Multiphysics for only 60 seconds duration. The kinematic hardening was described by using multiple back stresses. Multiple back stresses can provide a smoother transition between the elastic and plastic deformation, and it improves the general shape of the hysteresis loop. Two cases (geometries) have been examined in this study. From the material model and finite element cyclic plasticity model results, it is found that for the same parameters, but different dimensions there is difference on the stress-strain curves as well as on the von Mises stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Scientific Research in Science, Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.