Abstract

The effects of temperature and strain rate on flow stress of a highly ductile acrylic adhesive were investigated by performing tensile lap shear experiments on an adhesively bonded single-lap joint, as well as torsion experiments on a tubular butt-joint at temperatures ranging from 10 to 40oC at various shear strain rates. The flow stress decreases considerably with decreasing strain rate and with temperature rise. The stress-strain responses under multi-axial stress conditions were also examined by performing combined tension-torsion experiments on the butt-joint. A constitutive model of temperature-dependent elasto-viscoplasticity that describes multi-axial stress-strain behavior of the adhesive is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call