Abstract

For the clarification of the routes to elasto-inertial turbulence (EIT), it is essential to understand how viscoelasticity modulates coherent flow structures including the longitudinal vortices. We focused on a rotating plane Couette flow that provides two-dimensional (2D) roll cells for the steady laminar Newtonian-fluid case, and we investigated how the steady longitudinal vortices are modulated by viscoelasticity at different Weissenberg numbers. The viscoelasticity was found to induce an unsteady flow state where the 2D roll-cell structure was periodically enhanced and damped with a constant period, keeping the homogeneity in the streamwise direction. This pulsatile motion of the roll cell was caused by a time lag in the response of the viscoelastic force to the vortex development. Both the pulsation period and time lag were found to be scaled by the turnover time of cell rotation rather than by the relaxation time, despite the viscoelasticity-induced instability. We also discuss the counter torque on the roll cell and the net energy balance, considering their relevance to polymer drag reduction and EIT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.