Abstract

We study the suspensions of magnetic particles, the precursor state of magnetic gels and elastomers. We use magnetic particles with a permanent magnetization which is high enough to overcome thermal energy and low enough to guarantee a long live time of the sample. These particles form a space-filling structure at very low volume fractions (approximately 0.5 vol %), which modifies the viscoelastic response of the matrix significantly. In confined geometry the particles form clusters of a size that depends on the sample thickness. Even small external fields induce a strong anisotropy in the mechanical and optical properties of the suspension. The action of the applied magnetic field induces a gel-like response in one direction but leaves the other directions liquidlike. The viscosity is a very sensitive mechanical test for the anisotropy of the material. Light scattering data confirm our mechanical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.