Abstract

The aim of the study described here was to investigate the role of viscoelasticity in assessing muscle fibrosis and inflammation in a rat model of contusion using quantitative shear wave elastography (SWE). Unilateral gastrocnemius muscle contusion was induced in 32 male rats using an impactor apparatus. The contralateral muscles served as the control group. SWE was applied to the control group and rats 1, 3, 14 and 21 d after successful modeling (each time point group, n=8). Histologic features were used as reference standards. The degree of fibrosis was moderately correlated with shear wave speed (r=0.53), whereas the degree of inflammation was well correlated with shear wave dispersion (SWD) slope (r=0.74). The area under the receiver operating characteristic curve (AUC) for the dispersion slope for muscle inflammation and fibrosis assessment was 0.87 (95% confidence interval: 0.705-0.963), which exceeded that of the shear wave speed (0.68, 95% confidence interval: 0.494-0.834). The larger decline in dispersion slope in the fibrotic stage than in the inflammation stage (1-d group vs. 14-d group or 21-d group, p < 0.05) indicated better predictive performance than the shear wave speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call