Abstract

Hydrogels have received considerable attention as an innovative material due to their widespread applications in various fields. As a soft and wet material, its mechanical behavior is best understood in terms of the viscoelastic response to the periodic deformation, which is closely related to the microscopic chemically/physically cross-linked structures. Herein, a dual-cross-linked (DC) hydrogel, where a physically cross-linked network by ionic coordination (Fe3+) is imposed on a chemically cross-linked poly(acrylamide-co-acrylic acid) network, was studied in detail by rheology and proton multiple-quantum (MQ) NMR spectroscopy. Rheology experiments revealed the diverse temperature- and strain-frequency-dependent viscoelastic behaviors for DC hydrogels induced by the dynamic Fe3+ coordination interactions, in contrast to the single chemically cross-linked (SC) hydrogels. During the shear experiment, the trivalent Fe3+ complex with moderate/weak binding strength might transform to those with strong binding...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.