Abstract
We report a numerical investigation of the viscoelastic behavior in models for steric repulsive and short-ranged attractive colloidal suspensions, along different paths in the attraction strength vs packing fraction plane. More specifically, we study the behavior of the viscosity (and its frequency dependence) on approaching the repulsive glass, the attractive glass, and in the reentrant region where viscosity shows a nonmonotonic behavior on increasing attraction strength. On approaching the glass lines, the increase of the viscosity is consistent with a power-law divergence with the same exponent and critical packing fraction previously obtained for the divergence of the density fluctuations. Based on mode-coupling calculations, we associate the increase of the viscosity with specific contributions from different length scales. We also show that the results are independent of the microscopic dynamics by comparing Newtonian and Brownian simulations for the same model. Finally, we evaluate the Stokes-Einstein relation approaching both glass transitions, finding a clear breakdown which is particularly strong for the case of the attractive glass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.