Abstract
Abstract The kinetics of spreading of a liquid drop is usually controlled by conversion of capillary potential energy into viscous dissipation within the liquid when the solid is rigid. However, if the solid is soft, a “wetting ridge” near the solid/liquid/vapour triple line can also be a dissipative sink as the wetting front moves. As a consequence, the kinetics of wetting of rubber may be controlled essentially by viscoelastic losses in the polymer rather than by viscous losses in the liquid drops. Therefore, a direct analogy between the kinetics of wetting and adhesion, respectively, for a liquid and a solid on an elastomeric substrate has been recently proposed. In this paper, the superposition of viscoelastic braking and moderate rubber swelling in the drop spreading phenomenon is considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.