Abstract

This paper contains equations for the motion of linear viscoelastic bodies interacting under gravity. The equations are fully three dimensional and allow for the integration of the spin, the orbit, and the deformation of each body. The goal is to present good models for the tidal forces that take into account the possibly different rheology of each body. The equations are obtained within a finite dimension Lagrangian framework with dissipation function. The main contribution is a procedure to associate to each spring–dashpot model, which defines the rheology of a body, a potential and a dissipation function for the body deformation variables. The theory is applied to the Earth (solid part plus oceans) and a comparison between model and observation of the following quantities is made: norm of the Love numbers, rate of tidal energy dissipation, Chandler period, and Earth–Moon distance increase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call