Abstract

We have applied a dynamic force modulation technique to the mechanical unfolding of a homopolymer of immunoglobulin (Ig) domains from titin, (C47S C63S I27) 5, [(I27) 5] to determine the viscoelastic response of single protein molecules as a function of extension. Both the stiffness and the friction of the homopolymer system show a sudden decrease when a protein domain unfolds. The decrease in measured friction suggests that the system is dominated by the internal friction of the (I27) 5 molecule and not solvent friction. In the stiffness-extension spectrum we detected an abrupt feature before each unfolding event, the amplitude of which decreased with each consecutive unfolding event. We propose that these features are a clear indication of the formation of the known unfolding intermediate of I27, which has been observed previously in constant velocity unfolding experiments. This simple force modulation AFM technique promises to be a very useful addition to constant velocity experiments providing detailed viscoelastic characterization of single molecules under extension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.