Abstract

The mechanical properties of the crystalline lens are crucial in determining the changes in lens shape that occur during the accommodation process and are also a major factor in the development of the two most prevalent age-related diseases of the lens, presbyopia and cataracts. However, a comprehensive understanding of these properties is currently lacking. Previous methods for characterizing the mechanical properties of the lens have been limited by the amount of data that could be collected during each test and the lack of complex material modeling. These limitations were mainly caused by the lack of imaging techniques that can provide data for the entire crystalline lens and the need for more complex models to describe the non-linear behavior of the lens. To address these issues, we characterized the mechanical properties of 13 porcine lenses during an ex vivo micro-controlled-displacement compression experiment using optical coherence elastography (OCE) and inverse finite element analysis (iFEA). OCE allowed us to quantify the internal strain distribution of the lens and differentiate between the different parts of the lens, while iFEA enabled us to implement an advanced material model to characterize the viscoelasticity of the lens nucleus and the relative stiffness gradient in the lens. Our findings revealed a pronounced and rapid viscoelastic behavior in the lens nucleus (g1 = 0.39 ± 0.13, τ1 = 5.01 ± 2.31 s) and identified the lens nucleus as the stiffest region, with a stiffness 4.42 ± 1.20 times greater than the anterior cortex and 3.47 ± 0.82 times greater than the posterior cortex. However, due to the complex nature of lens properties, it may be necessary to employ multiple tests simultaneously for a more comprehensive understanding of the crystalline lens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call