Abstract

This work investigates the viscoelastic properties of the fluoropolyol (FPOL) polymer on the surface acoustic wave (SAW) organophosphorous vapor sensors. A complex shear modulus is used to express different polymer types (glassy, glassy-rubbery, and rubbery). The different polymer types leads to different propagating properties of SAW, such as attenuation change and velocity shift. Calculation results indicate that the glassy-rubbery film exhibits the highest sensitivity for detecting organophosphorous vapor. The thicker the glassy and glassy-rubbery film implies a higher sensitivity. Moreover, the SAW vapor sensor based on the rubbery film represents the response of acoustically thick layers which has a peak in attenuation with an increasing vapor adsorption. The selectivity factor between DMMP (10 ppm) and H2O (40%RH) is so low that the selectivity of FPOL film towards water is ineffecient. However, the selectivity factor between ethanol (10 ppm) and DMMP (10 ppm) is as high as 2512, thus confirming that the selectivity of FPOL film towards ethanol is good. Therefore, a precise and dry humidity control in the sensors system with FPOL coating is required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.