Abstract

The interactions between cellulose and pectin polysaccharides in primary plant cell walls are not fully understood, although several recent studies indicate that they might play an important role in wall properties. Studying polysaccharide interactions in planta is challenging, due to the complexity and heterogeneity of plant materials. Therefore, to investigate these interactions and the implications for the rheological properties of cell walls, we have taken a bottom-up approach in which cellulose/pectin composites are created either by adsorption of pectin polysaccharides (arabinan, galactan, homogalacturonan DE 69, homogalacturonan DE 33 and pectin DE 33) on cellulose-coated sensors in a quartz crystal microbalance with dissipation monitoring (QCM-D) or by incorporation of pectin during in vivo cellulose synthesis by Komagataeibacter bacteria. The viscoelastic behavior of the adsorbed layers was analyzed by applying the Voigt model to the QCM-D data, whilst the bulk viscoelastic properties of bacterial cellulose/pectin composites were studied by small amplitude oscillatory shear rheology. Our results show that all of the pectin polysaccharides studied have the ability to adsorb on the cellulose surfaces. The viscoelastic properties of the adsorbed layer varied depending on the substitution and degree of esterification of the pectin polysaccharides. Additionally, oscillatory rheology results showed that all bacterial cellulose-pectin composites had a gel nature (G′ > G″) with moduli varying in line with QCM-D determined viscoelasticity. Our interpretation of the results provides a better understanding of pectin-cellulose interactions and has implications for primary plant cell wall material properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.