Abstract

Changes in reduced viscosity of nuclear lysates from rat liver cells have been studied, in conditions of very low shear stress by the use of an oscillating viscometer, as a function of incubation time in alkaline (pH 12.5) and neutral (pH 8.0) solutions. In non-denaturing conditions, nuclear DNA showed a stepwise, time-dependent increase of reduced viscosity, which suggests that it behaves as a single hydrodynamic unit that progressively changes its radius and viscoelastic properties because of a very slow unfolding, through discrete successive transitions, from a highly superpacked structure toward a linear relaxed B-form fiber. Experimental conditions shown to reduce chromatin-DNA superpacking without changing DNA length (e.g. G 1 cycling versus G 0 non-cycling liver cells, or young versus old rat liver cells) dramatically increased the initial value of reduced viscosity and its time-dependent increment. Conversely, in denaturing conditions, reduced viscosity increased in the initial phase (probably because DNA unfolding prevails on DNA unwinding), then exhibited a plateau level (when unfolding balances unwinding), and subsequently decreased progressively to the value of sheared DNA (when unwinding becomes more rapid due to the progressive breakage of phosphodiester bridges in alkali). Experimental conditions known to induce DNA single- or double-strand breaks (i.e. the use of liver cells from rats treated with dimethylnitrosamine or 2-acetylaminofluorene, or of liver cells exposed to X-rays) caused in both neutral and alkaline solution an increment in the initial reduced viscosity and in the slope of its time-dependent increase, which may be related to a reduction of chromatin-DNA superpacking. Moreover, it became evident in denaturing conditions that a decrease of the maximum viscosity and of the time taken to reach it both related to a reduced DNA length. These viscoelastic properties are constantly correlated with independent DNA structural measurements on the same nuclear lysates, to discriminate the effect due to mere aggregation and disaggregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call